100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Deep Mutual Density Ratio Estimation with Bregman Divergence and Its Applications

发布时间:2025-07-05 作者: 浏览次数:
Speaker: ?孙六全 DateTime: 2025年7月7日(周一)下午14:00-15:00
Brief Introduction to Speaker:

孙六全 ,中国科学院数学与系统科学研究院

Place: 国交2号楼315
Abstract:This talk introduces a unified approach to estimating the mutual density ratio, defined as the ratio between the joint density function and the product of the individual marginal density functions of two random vectors. It serves as a fundamental measure for quantifying the relationship between two random vectors. Our method uses Bregman divergence to construct the objective function and leverages deep neural networks to approximate the logarithm of the mutual density ratio. We establish a non-asymptotic error bound for our estimator, achieving the optimal minimax rate of convergence under a bounded support condition. Additionally, our estimator mitigates the curse of dimensionality when the distribution is supported on a lower-dimensional manifold. We extend our results to overparameterized neural networks and the case with unbounded support. Applications of our method include conditional probability density estimation, mutual information estimation, and independence testing. Simul...
主站蜘蛛池模板: 娄烦县| 绵竹市| 健康| 赤水市| 巴东县| 蕲春县| 库车县| 盐津县| 大英县| 海林市| 拜泉县| 福鼎市| 临沧市| 莱芜市| 潢川县| 宁强县| 鸡东县| 镇康县| 绵阳市| 浦北县| 成都市| 军事| 鄂伦春自治旗| 黑山县| 德州市| 龙门县| 南川市| 霸州市| 萝北县| 宣武区| 阿荣旗| 岢岚县| 乾安县| 莱州市| 永定县| 大宁县| 毕节市| 深水埗区| 佛学| 彭阳县| 日土县|