100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
数苑经纬讲坛
当前位置: 学院主页 > 科学研究 > 数苑经纬讲坛 > 正文

数苑经纬讲坛(28):Gradient Orthogonal Basis Decomposition?for High-Dimensional Factor in Binary Outcomes

发布时间:2025-09-18 作者: 浏览次数:

报告时间:2025年09月22日 (周一)上午09:00-10:00

报告地点:腾讯会议号:220265323

报告人:李元章教授 乔治华盛顿大学

摘要:Identifying significant factors from high-dimensional datasets remains a critical challenge in biomedical research, particularly when the outcome of interest is binary. We propose a novel approach using Gradient Orthogonal Basis (GOB) decomposition to efficiently reduce dimensionality and select informative variables in logistic regression models. The method decomposes the factor space into gradient-based orthogonal directions, capturing directions with maximal discriminatory power while controlling for noise and correlation structures. Model fitting proceeds via conditional logistic regression and generalized estimating equations (GEE), allowing for flexible handling of correlation and clustering. Variable selection is guided through statistical tests including Wald, Score, AIC, and QIC, alongside interaction assessments and sum-based statistics for robustness.

We apply our method to biomarker datasets involving schizophrenia and bipolar disorder, where it demonstrates improved power, interpretability, and consistency over traditional penalized or projection-based methods. Simulation studies further validate its effectiveness in scenarios with complex correlation patterns and moderate sample sizes. Our results highlight the GOB framework as a promising direction for interpretable and statistically rigorous modeling of high-dimensional binary outcome data.


主站蜘蛛池模板: 年辖:市辖区| 土默特右旗| 东海县| 新密市| 永定县| 克什克腾旗| 株洲县| 枣强县| 泸溪县| 原平市| 图木舒克市| 黎川县| 漳平市| 西安市| 太仓市| 独山县| 靖宇县| 河南省| 石狮市| 尼玛县| 五台县| 丹东市| 茌平县| 炎陵县| 株洲县| 郯城县| 凌云县| 榕江县| 泰和县| 新龙县| 淳化县| 东丽区| 榆社县| 井冈山市| 四子王旗| 桐柏县| 横峰县| 曲沃县| 香河县| 平乡县| 达尔|