100元2小时不限次数电话号码,全国空降200元快餐联系方式,24小时微信快餐妹,全国同城约资源匹配系统

科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Deep Mutual Density Ratio Estimation with Bregman Divergence and Its Applications

发布时间:2025-10-24 作者: 浏览次数:
Speaker: 孙六全 DateTime: 2025年11月6日(周四) 下午 15:00-17:00
Brief Introduction to Speaker:

孙六全 ,中国科学院数学与系统科学研究院教授。

Place: 国交2号楼315会议室
Abstract:This talk introduces a unified approach to estimating the mutual density ratio, defined as the ratio between the joint density function and the product of the individual marginal density functions of two random vectors. It serves as a fundamental measure for quantifying the relationship between two random vectors. Our method uses Bregman divergence to construct the objective function and leverages deep neural networks to approximate the logarithm of the mutual density ratio. We establish a non-asymptotic error bound for our estimator, achieving the optimal minimax rate of convergence under a bounded support condition. Additionally, our estimator mitigates the curse of dimensionality when the distribution is supported on a lower-dimensional manifold. We extend our results to overparameterized neural networks and the case with unbounded support. Applications of our method include conditional probability density estimation, mutual information estimation, and independence testing……
主站蜘蛛池模板: 邵阳市| 中山市| 河间市| 金乡县| 尉犁县| 井研县| 徐水县| 蓬安县| 罗城| 江西省| 新源县| 洪泽县| 宾川县| 抚州市| 黎平县| 闵行区| 松潘县| 鄂尔多斯市| 南皮县| 富阳市| 太白县| 宿松县| 蓬溪县| 皋兰县| 开鲁县| 上林县| 墨脱县| 平舆县| 喜德县| 台北市| 禄劝| 昌平区| 海城市| 吉安市| 沾益县| 高碑店市| 徐州市| 文成县| 栖霞市| 扶沟县| 新密市|